Finding Slid Pairs for the Plantlet Stream Cipher

Joshua Copeland and Leonie Simpson

Queensland University of Technology

lr.simpson@qut.edu.au

February 5, 2020
Overview

Introduction

Plantlet Description

Observations

Simplified Plantlet

Slid Pairs and Shifted Keystreams

Slid Pairs for Simplified Plantlet

Slid Pairs for Plantlet

Discussion

Conclusion
Plantlet Stream Cipher

- Lightweight binary additive stream cipher proposed in 2016
 - Mikhailév, Armnecht and Muller
- Keystream generator design based on bit-wise shift registers
 - Similar to Grain, Sprout
- Two inputs:
 - 80-bit secret key
 - 90-bit known initialisation vector (IV)
- Output: a binary sequence of length $\leq 2^{30}$ bits
 - Encryption: XOR this sequence with plaintext
 - Decryption: XOR this sequence with ciphertext
What are Slid Pairs?

- Different (key, IV) pairs that produce phase-shifted versions of the same binary sequence
- Should be hard to find slid pairs or determine relationships
Plantlet Structure

Key store: M
$(k_0, k_1, \ldots, k_{79})$

Counter: C
(c_0, c_1, \ldots, c_8)

NLFSR: N
$(n_0, n_1, \ldots, n_{39})$

LFSR: L
$(l_0, l_1, \ldots, l_{60})$

g

h

z^t

Joshua Copeland and Leonie Simpson
QUT
Slid Pairs in Plantlet - AISC2020
Plantlet Operation - Modes

Initialisation

- **Loading phase:**
 - First 40 bits of IV loaded into (40-bit) NLFSR
 - Remaining 50 bits of IV loaded into (61-bit) LFSR
 - Remaining LFSR stages loaded with 1’s - except for one 0

- **Diffusion phase:**
 - State update function applied to internal state 320 times
 - Register feedback, key bit k^t and counter bit c^t used in update
 - No keystream output BUT z^t used in both LFSR and NLFSR updates

Keystream generation

- z^t used as keystream only - not in LFSR or NLFSR feedback
Observations: Periodic Subsequences

Key component

- Plantlet makes continuous use of the key - throughout initialisation and keystream generation
- One key bit used as input to NLFSR update at each time step
- $k^t = k_t \mod 80$; periodic with period = 80 or a divisor of 80

Counter component

- 7 bits of C used for simple counter: from 0 to 79 then reset
- Stage 4 content forms input to NLFSR update each time step
- Counter component produces a fixed binary sequence
- $C_4 = (0^{16}1^{16}0^{16}1^{16}0^{16})$; periodic with period = 80
Observations: Register Autonomy?

LFSR component

- During **initialisation**, z^t used in LFSR update
- During **keystream generation**, LFSR is autonomous
 - Primitive feedback function and register contents not all-zero at end of initialisation, so LFSR output is binary sequence with period $2^{61} - 1$

NFSR component

- NFSR not autonomous in either initialisation or keystream generation
- During **initialisation**, $n_{39}^{t+1} = g(N^t) \oplus z^t \oplus l_0^t \oplus c_4^t \oplus k^t$
- During **keystream generation**, $n_{39}^{t+1} = g(N^t) \oplus l_0^t \oplus c_4^t \oplus k^t$
Can we simplify Plantlet?

- During initialisation and keystream generation, both M and C
 - Are autonomous components
 - Produce sequences with period 80, or a divisor of 80
- Outputs of $M \& C (k^t \& c_4^t)$ XORed in NLFSR state update
- Combine both M and C into single component J
 - J produces sequence with period 80 (or a divisor of 80)
 - Adjust value of Plantlet key K by combining with 80-bit counter sequence C_4
 - Effective key: $K \oplus C_4$
- Simplified Plantlet using $K \oplus C_4$ produces same keystream as Plantlet with K
- Simpler design is easier to analyze
 - Acknowledgement of Micah Brown investigation, 2018
Simplified Plantlet Structure

\[
\begin{align*}
\text{NLFSR: } & N \\
& (n_0, n_1, \ldots, n_{39}) \\
\text{LFSR: } & L \\
& (l_0, l_1, \ldots, l_{60}) \\
\text{Effective Key store: } & J \\
& (j_0, j_1, \ldots, j_{79}) \\
\end{align*}
\]
Initialisation

- **Loading phase - same as Original Plantlet:**
 - First 40 bits of IV loaded into (40-bit) NLFSR
 - Remaining 50 bits of IV loaded into (61-bit) LFSR
 - Remaining LFSR stages loaded with 1’s - except for one 0

- **Diffusion phase:**
 - State update function applied to internal state 320 times
 - Register feedback bits and effective key bit j^t used in update
 - No keystream output BUT z^t used in both LFSR and NLFSR updates

Keystream generation

- z^t is used as keystream - not used in LFSR or NLFSR feedback
Slid Pairs for Simplified Plantlet

Consider component J (formed by combining K and C)

- J is autonomous
- Output of J is binary sequence, could be produced by cyclic register of length 80
 - Slid pairs can only arise from effective keys which are cyclic shifts of each other
- Fixed format of loaded state does not necessarily imply minimum phase shift
 - Since state update function is different in initialisation and keystream generation modes
- What size phase shifts are possible? Investigate in experiments
Experimental Investigation - Finding Slid Pairs

Experimental trials

- Select a Key and IV: \((J_i, V_j)\)
- Initialise Simplified Plantlet and begin to produce keystream
- At each iteration of keystream generation, consider internal state as candidate initial state
 - Perform initialisation state update function in reverse, 320 times, and check if obtained state has format required for loaded state
- If so, note details of corresponding key, IV and phase shift (it’s a slid pair!)
- Continue producing keystream and checking candidate states until 204,800 bits of keystream have been produced
Experimental Investigation - Finding Slid Pairs

Experiment Details

- Experiment performed with 12 different keys, 12 different IVs
 - Some patterned strings: 000...00; 01010101...01, etc
 - Some non-patterned strings
- Each key was used with each IV \Rightarrow 144 trials were conducted
- In each trial (producing 204,800 bits of keystream), we recorded
 - the number of slid pairs occurring
 - the slid pair values (J_i, V_j), and
 - the size of the phase shifts
Simplified Plantlet Experiment Results

Number of slid pairs found per trial from initial pair \((J_i, V_j)\)

<table>
<thead>
<tr>
<th>ExV</th>
<th>ExK_1</th>
<th>ExK_2</th>
<th>ExK_3</th>
<th>ExK_4</th>
<th>ExK_5</th>
<th>ExK_6</th>
<th>...</th>
<th>ExK_12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExV_1</td>
<td>102</td>
<td>101</td>
<td>94</td>
<td>91</td>
<td>88</td>
<td>78</td>
<td>...</td>
<td>97</td>
</tr>
<tr>
<td>ExV_2</td>
<td>98</td>
<td>78</td>
<td>94</td>
<td>93</td>
<td>89</td>
<td>78</td>
<td>...</td>
<td>100</td>
</tr>
<tr>
<td>ExV_3</td>
<td>91</td>
<td>99</td>
<td>94</td>
<td>98</td>
<td>90</td>
<td>97</td>
<td>...</td>
<td>93</td>
</tr>
<tr>
<td>ExV_4</td>
<td>101</td>
<td>97</td>
<td>108</td>
<td>103</td>
<td>124</td>
<td>90</td>
<td>...</td>
<td>107</td>
</tr>
<tr>
<td>ExV_5</td>
<td>98</td>
<td>110</td>
<td>89</td>
<td>112</td>
<td>103</td>
<td>91</td>
<td>...</td>
<td>94</td>
</tr>
<tr>
<td>ExV_6</td>
<td>99</td>
<td>93</td>
<td>97</td>
<td>92</td>
<td>88</td>
<td>104</td>
<td>...</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>ExV_10</td>
<td>80</td>
<td>107</td>
<td>93</td>
<td>82</td>
<td>109</td>
<td>99</td>
<td>...</td>
<td>109</td>
</tr>
<tr>
<td>ExV_11</td>
<td>93</td>
<td>83</td>
<td>105</td>
<td>106</td>
<td>104</td>
<td>100</td>
<td>...</td>
<td>95</td>
</tr>
<tr>
<td>ExV_12</td>
<td>89</td>
<td>100</td>
<td>99</td>
<td>96</td>
<td>92</td>
<td>91</td>
<td>...</td>
<td>112</td>
</tr>
</tbody>
</table>
Simplified Plantlet Experiment Results

Size of Phase Shifts (Minimum, Mean, Maximum)

<table>
<thead>
<tr>
<th></th>
<th>ExK_1</th>
<th>ExK_2</th>
<th>ExK_3</th>
<th>ExK_4</th>
<th>ExK_5</th>
<th>...</th>
<th>ExK_{12}</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExV_1</td>
<td>17</td>
<td>4</td>
<td>14</td>
<td>6</td>
<td>62</td>
<td>...</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1,989</td>
<td>2,026</td>
<td>2,168</td>
<td>2,239</td>
<td>2,315</td>
<td>...</td>
<td>2,102</td>
</tr>
<tr>
<td></td>
<td>12,441</td>
<td>12,832</td>
<td>9,176</td>
<td>13,114</td>
<td>14,250</td>
<td>...</td>
<td>9,805</td>
</tr>
<tr>
<td>ExV_2</td>
<td>70</td>
<td>73</td>
<td>5</td>
<td>14</td>
<td>5</td>
<td>...</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2,086</td>
<td>2,627</td>
<td>2,141</td>
<td>2,156</td>
<td>2,245</td>
<td>...</td>
<td>2,038</td>
</tr>
<tr>
<td></td>
<td>9,510</td>
<td>10,578</td>
<td>13,402</td>
<td>9,433</td>
<td>14,408</td>
<td>...</td>
<td>7,676</td>
</tr>
<tr>
<td>ExV_{12}</td>
<td>72</td>
<td>7</td>
<td>26</td>
<td>1</td>
<td>21</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2,223</td>
<td>2,009</td>
<td>2,042</td>
<td>2,121</td>
<td>2,197</td>
<td>...</td>
<td>1,774</td>
</tr>
<tr>
<td></td>
<td>15,927</td>
<td>13,302</td>
<td>9,118</td>
<td>9,096</td>
<td>10,862</td>
<td>...</td>
<td>8,679</td>
</tr>
</tbody>
</table>
Slid Pairs for Simplified Plantlet

Main findings

Slid pairs found in all trials

- Minimum number found: 72 (for \(ExK_7, ExV_1 \))
- Maximum number found: 129 (for \(ExK_{12}, ExV_6 \))
- Inspection of keys in slid pairs revealed
 - All keys in slid pairs are cyclic shifts of key used
 - Occurrence approximates proportion of distinct keys possible

Phase shift for slid pairs

- Minimum phase shift \(< 10\) in over 30% of trials
- Mean phase shift approx 2000
Slid Pairs for Plantlet

Relationship between Simplified Plantlet and Plantlet Keys

- For a given IV, the sequence produced by Plantlet with key K can be produced by Simplified Plantlet with key $J = K \oplus C_4$

Phase Shifts and Slid Pairs

- Suppose for Simplified Plantlet, (J_0, V_0) produces a keystream, and (J_1, V_1) produces an α shifted keystream
- Consider the Plantlet keys that produce these sequences
 - Clearly, $K_0 = J_0 \oplus C_4$
 - Similarly, if $\alpha \mod 80 = 0$, then $K_1 = J_1 \oplus C_4 = K_0$
 - If $\alpha \mod 80 \neq 0$, then obtaining K_1 involves correcting for out-of-phase counter sequence: $K_1 = J_1 \oplus C_4 \oplus C_4 \lll \alpha \mod 80$
Suppose Plantlet is used with key K_0 to produce keystream.

The keys in slid pairs with phase shift α are of the form

$($$K_0 \ll (\alpha \mod 80)) \oplus (C_4 \ll (\alpha \mod 80)) \oplus C_4$$

To verify the Slid Pairs key relationship, experiments were performed following the process used for Simplified Plantlet.

- Slid Pairs found in all experimental trials
- Minimum number found: 69 (for ExK_9, ExV_6)
- Maximum number found: 122 (for ExK_1, ExV_6)
- Phase shifts of less than 10 occurred in 28% of trials
Discussion

- For both Simplified Plantlet and Plantlet, slid pairs occurred for all (Key, IV) pairs used in our experiments
 - Average phase shift approx. 2000, can be as small as 1
- For Simplified Plantlet, keys in slid pairs are cyclic shifts
 - Implication for patterned keys if period of key sequence < 80
 - Example: 01010101...01
- For Plantlet, relationship between keys in slid pairs slightly more complex
 - Combination of a cyclic shift of the key with a masking value obtained from the counter sequence
 - \((K_0 \ll (\alpha \mod 80)) \oplus (C_4 \ll (\alpha \mod 80)) \oplus C_4\)
 - Since counter sequence has period 80, there are 79 effective masking values
Conclusion

- Where multiple keystreams will be produced from different (Key,IV) inputs, Plantlet keystreams are not all distinct and unpredictable - a relationship has been established.
- Use the relationship between keys giving rise to slid pairs to divide the keyspace.
 - Form sets of keys that can produce shifted keystreams.
 - Size of each set is at most 80.
- May be able to exploit this in TMD attacks - future work.
Questions?